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FERMI PULSARS: OPEN QUESTIONS

» Origin of gamma-ray emission: gaps, current sheets, synchrotron, curvature, IC?
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» What is the magnetospheric structure
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PULSAR PROBLEM: AN OLD CHESTNUT

What is the magnetospheric structure of a rotating magnetized conducting sphere
with small surface work function?
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Current closure is essential




PULSAR PROBLEM: METHODS AND APPROXIMATIONS |

Force-free paradigm. Assume plasma is abundant and light.
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Solution properties: All accelerating fields are shorted

* Y-point out

* Closed/open field lines

C t sheet : = Oblique: Spitkovsky (2006), Kalapotharakos et al (2009)
LECh S c e Possible to extend to resistive Petri (2012), Tchekhovskoy et al. (2014) (full MHD)

* No pathologies at null limit (Li et al 2012, Kalapotharakos et al
surface and LC 2012-16)

* Predicts the spindown law
* Field lines are asymptotically radial




PULSAR PROBLEM: METHODS AND APPROXIMATIONS I

Kinetic model. Use particle-in-cell (PIC) method S
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GJ charge-separated solution is dead
Other groups using PIC: Kalapotharakos et al, Chen et al, Belyaev et al




SOLUTIONS WITH PAIR PRODUCTION

Add pair production with threshold based on particle energy in the inner magnetosphere.
Outer magnetosphere: pair production in photon-photon collisions; keep track of photons

R./(c/wp,)~30—-40>1 Rpo/R.=3-5

Electron density
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Ppo = uQ?/c* ~ 500 > Yihreshold = 40

Positron density
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j < paJ C is satisfied by non relativistic outflow of electrons! Philippov et al. (2015a)

Approaches force-free field solution, but no polar pair production!

Chen, Beloborodov (2014)




SOLUTION: IT'S A MASSIVE ROTATING SPHERICAL CONDUCTORI
Add GR frame-dragging effect
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Lense-Thirring frame dragging

Philippov et al. (2015Db)
Beskin 1990
Muslimov & Tsygan 1992




ALIGNED ROTATOR WITH GR AND PAIRS

Electron density ,: Positron density
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Polar pair production returns!

Philippov et al. (2015b)




OBLIQUE ROTATOR WITH GR AND PAIRS

Pair production happens on Electron density

the polar cap, in return
current layers and in the
current sheet beyond LC

Polar discharge is non-
stationary. Electric field
screening by advecting
plasma clouds generates

Rrc

waves. The plasma motions
are collective and coherent
— implications for radio

emission (see Beloborodov
2008, Timokhin & Arons 2013)
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Philippov & AS., 2018
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OBLIQUE ROTATOR WITH GR AND PAIRS

Return current

Counterstreaming is present

in polar discharge and in

return current

Opportunities for maser
emission from collective

instabilities of
counterstreaming
distributions.
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GAMMA-RAY LIGHTCURVES

Photon density
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PARTICLE ACCELERATION AND SPECTRA
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Particles are accelerated in the current
sheet during reconnection.

Radiation appears as broad spectral peak.
The max frequency is set by magnetization

OLC:
Vmax = 3¢ (0.1BLc) 07 /4nmec

Pair production in sheet sets the sigma

parameter. lons gain good fraction of ®y
Philippov & AS., 2018




THE ROLE OF RECONNECTION WITH PAIR PRODUCTION IN SETTING CUTOFF ENERGY
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Reconnection in the current sheet is main particle accelerator. Gamma-gamma pair formation can start.
Pair formation increases the pair loading above the sheet, and lowers effective magnetization in the sheet.
Particle acceleration follows magnetization, max particle energy is reduced.

Hakobyan, Philippov, AS 2018




THE ROLE OF RECONNECTION WITH PAIR PRODUCTION IN SETTING CUTOFF ENERGY
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THE ROLE OF RECONNECTION WITH PAIR PRODUCTION IN SETTING CUTOFF ENERGY
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Pair formation increases the pair loading above the sheet, and lowers effective magnetization in the sheet.
Particle acceleration follows magnetization, max particle energy is reduced.
Naively, cutoff energy should be a strong function of B at the LC.
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Pair loading softens the dependence
Yeutoff ™~ OLC X BL2,C/77”GJ

Expect cutoff energy dependence to be between FEcuor x Bi&-Bi& and Feytof X 358-8_358-2

Observed dependence: Ecutoft X Brg-Bré

Hakobyan, Philippov, AS 2018




THE ROLE OF RECONNECTION WITH PAIR PRODUCTION IN SETTING L},

Gamma luminosity is larger for aligned rotators than for oblique ones. Ly/E varies from 1% for

orthogonal rotator to 10% for near aligned. Obliqueness effects can explain the spread in observed
values of L},. In this regime L}, cC.L.

Pair formation in the current sheet decreases magnetization and lowers maximum particle energy,
and radiative efficiency decreases. Also, reconnection slows down. This leads to slower dependence.

L. =F

3 T v v T v T T T T v ..---.:
; 202143651 ;
7
3 , :
e
// . 1 -
- . 1/2
L XL i
+.

-
-
-~
-
-
/,
-

,/
-
-
,I
-

’/
=
-
’/
-

>4
-
-
-
-~
/,
-~

Uy [ > 1 MeV] o L,

-
-
-~
-
-~
/’
-~

Abdo et al 2013




CONCLUSIONS

Electrodynamicaly self-consistent, working magnetospheric models with pair formation and emission
are now available using PIC simulations. GR frame-dragging is essential for polar cascades!

Paradigm change — current sheet beyond LC is effective particle accelerator and the site of majority
of high-energy emission. Need global simulations for modeling the right field shape! Forced
reconnection with self-consistent pair formation needs to be studied.

Light curves and spectra are consistent with synchrotron radiation for gamma-ray and below. IC is
needed for TeV.

Pair creation in the current sheet beyond the LC makes the synchrotron cutoff energy to depend
weakly on B c. When pair creation is weak, Lgamma is promotional to Edot. When pair loading is
strong, Lgamma scales as sqrt(Edot).

Radio emission is likely caused by the non-stationary discharge at the polar cap — first signatures of

this are seen in global simulations. More on radio and multiwavelength predictions to come!




